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Abstract

The major objective of this study was to compare test data from a large-scale
electric utility boiler (Milliken Station furnace) with predictions from the coal-qualified
PCGC-3 combustion code. Additional objectives were to identify and evaluate code
submodels and code geometrical input models that yielded appropriate validation
comparisons. The contract called for sixteen predicted cases. Twenty-one prediction
cases were run, of which twelve are presented in this report. The cases not presented are
for the smaller size grid cases (65K nodes) where prediction results indicate that grid
independence was not achieved.

Spatially resolved, point-for-point comparisons are presented herein between
Milliken Station predictions and measurements for gas composition (CO,, CO, SO,, NO,,
0,), gas temperatures, gas and particle velocities and particle composition. Where
available, turbulence intensities are also presented. Probe traverse averages and boiler
level averages at the Milliken furnace are also presented for the same variables.
Comparisons are presented for the effects of grid size, over-fire air injection point and
flow rate, and ignition point variation. Initial particle size distribution was obtained from
data and the low- NO, bumer geometry was obtained from construction drawings. Grid
density, limited by computational time requirements and ABB/CE proprietary
restrictions, did not allow more detailed geometrical modeling of the burner input
parameters, though near-field measurements in the burner were made to help alleviate this
deficiency.

In general, combustion code computations show acceptable trends with very good
point-for-point comparisons in the far-field but less reliable comparisons in the near-
burner field. This inexactness in the near-field 1s attributed to the crude nature of the
largest grid (337K nodes), even with vanable grid spacing, being unable to represent the
construction drawing details in the burner-input region. Lack of geometrical detail of the
burner ports configuration, and lack of precise mass distribution information between
primary coal/air, auxiliary air, over-fire air, and concentric firing air flow rates are also
contributing factors.

The conclusions from this phase ot the study are:

1. Full-scale furnace testing with sensitive laboratory instruments can be
successful and internal evaluation of such data gives assurance as to the
data’s accuracy.

2. A larger number of grid nodes is required for 3-D combustion model
solutions to yield adequate predictions for a boiler as large as Milliken
Station.



3. The coal devolatilization rate constants (ignition point location model)

have a significant influence on the predicted results, especially in the near-
field.

4. Far-field comparisons between measured and predicted data are better than
near-field comparisons. Analysis suggests that near-field comparisions can
be improved with larger numbers of grid nodes and improved code
submodels.

5. Trends for important variables like NO, and carbon-in-ash are correctly
represented, but quantitative comparisons can be improved, especially
in the near-field.

6. Continued efforts in evaluation of computerized computational methods
should yield improved comparison results. Emphasis will need to be
placed on improved near-field burner geometric models, turbulence
intensity models, grid size effects, and more precise wall heat flux
predictions.

These comparison results suggest that computerized predictions of large-scale
utility furnaces can successfully be made. This is particularly encouraging considering the
vast number of computations that a code must execute without error to accomplish these
kinds of predictions.



Introduction
Background

Full-scale power plant testing provides practical process data for evaluation of
combustion models and helps to assure that the submodels used in the code are adequate
to model the physical processes on a large scale. This is especially true of 3-dimensional
(3-D) models under development at ACERC and elsewhere which require increased
computing power and more exacting convergence and stability criteria and hence more
thorough evaluation using 3-D measured data. The coal-qualified version of PCGC-3
demonstrated good prediction comparisons with the 1991 Goudey Station test data as
reported previously (Cannon et al, 1994). The next phase of PCGC-3 validation was to
make predictions and measurements for the Milliken Station pulverized coal boiler. The
Milliken Station boiler is twice the size of the Goudey Station, with a rectangular boiler
cross section and newly installed low NO, burners. The test data for the Milliken Station
were obtained in July, 1995 (NYSEG Report 1995).

Milliken Program

This work was associated with the ACERC/NYSEG contract to test and simulate
NYSEG's Milliken Station boiler combustion using PCGC-3. The Milliken contract with
NYSEG included cost sharing with NYSEG, EPRI and ESEERCO.

The Milliken Station unit #2, where the testing was accomplished, is one of two
near identical plants belonging to NYSEG located on the Finger Lakes near Lansing in
New York State. The Milliken units are each designed for 160 MW, gross load. The
boilers are rectangular rather than square in cross-section, and are about twice the size of
the Goudey Station tested in 1989 and 1991 by ACERC personnel (see Cannon, et al
June 1992 and Oct. 1995 and NYSEG First Semi-Annual Report, 14 Oct. 1994). The
Milliken unit #2 has been fitted with thirteen new, 6~ probe ports specifically provided
for the ACERC tests and is part of a DOE Clean Coal Technology Program where new
low-NO, burners and a multi-million dollar Flue-Gas Desulphurization (FGD) unit has
been installed.

Test Matrix and Instrumentation

Testing at the Milliken Station was patterned after the Goudey Station testing.
The final testing matrix was modified to more thoroughly evaluate the newly installed
ABB/CE low NO, burners. The major test variables were coal type, over-fire air, load and
burner tilt variation.



Objectives and Approach

Modeling of combustion processes by computer simulation has been a major
thrust in ACERC combustion research. One obstacle to efforts at modeling 3-D
combustion processes is the lack of definitive validation data from representative large-
scale processes (Phillips and Smoot, 1989). A general purpose of this project was to
acquire test data at a range of scales that could be used to support and evaluate the
computer modeling of 3-D combustion devices over a significant range of different sizes.

In the summer of 1989, ACERC full-scale testing at the Goudey Station, 80 MW,
power plant in Johnson City, New York was initiated in cooperation with the owner
utility NYSEG and ASEA Brown Boveri/Combustion Engineering (ABB/CE) and with
funding help from ESEERCO. This was a first step in the process of testing at multiple-
scale levels with a mobile testing trailer equipped to carry the instruments and probes
necessary for remote testing from BYU. In July 1991, BYU returned to the Goudey
Station for further testing on the same boiler that had been reclad and redesigned with a
new super-heat/re-heat section. The Milliken Station Project was a continuance of that
program with a doubling of plant scale and a more advanced burner system. This final
report is the culmination of a series of reports delivered to NYSEG by contractual
agreement that include the Field Measurement Report (NYSEG 1995) and the
Comparison Report (NYSEG 1997).

Instrumentation was designed to gather data at strategic locations to not only
support validation of combustion models, but also to refine the computerized combustion
model program inputs. The long-term goal of comprehensive combustion modeling has
been to develop validated programs that adequately simulate combustion in small, lab-
scale burners as well as full-scale utility boilers. To fit this broad scale size range (10°),
ACERC has saught to validate submodels and the overall code at different combustor
scale levels as shown in Table 1.

Table 1. Burner scales at which PCGC-3 validation is addressed.

Scale Furnace Heat Release Rate Test Locations
1. Lab Scale ~0.01 - 0.1 Million BTU/hr -at BYU/CPR
2. Pilot Scale ~2 - 4 Million BTU/hr -BYU/CPR, FPTF, & Consol
Reactors
3. Small Scale Utility Boiler ~70 - 700 Million BTU/hr -Goudey Station, NY
4. Large Scale Utility Boiler ~1000 - 7500 Million BTU/hr -Milliken Station tests

It is anticipated that in the absence of commonly accepted scaling laws for
combustion, the computer modeling programs will become the most likely scaling mode



for combustion processes. This is particularly true for the large-scale, low-frequency,

turbulent eddies that are a major factor in the time-space scales in combustion processes
described by PCGC-3.

Anticipated Products
Error! No table of figures entries found.

The anticipated products of this test program were two-fold. The tests were
intended to evaluate the capability of comprehensive codes for large-scale boiler
simulation. Once validation is well along, the combustion codes can be used to improve
the operation and upgrading of existing power plants as well as provide guidance for
future power plant designs and pollutant retrofits. Thus, the key product from this
phase of the effort is a documented assessment of 3-D combustion code reliability in
predicting furnace behavior.

Results
Test Conditions

The Milliken experimental data set covers gas composition (CO, CO,, SO,, NO,, O,), gas
temperature, particle elemental composition (C, H, N, S), particle size distribution (both
gathered samples and in-situ measurements), particle velocity and concentration
measurements, gas velocity for 2-D directional measurements, along with turbulence
intensity and power spectral decomposition. The measurements were extracted from the
Milliken Station 160 MW, boiler during steady operation of the station. The test matrix
covered five different steady-state tests that included two coal types, two different loads,
and three over-fire air (SOFA) configurations as noted in Table 2.

Tests 1 and 3 were conducted to evaluate the effects of coal type on the furace
flow field. Tests 4 and 5 were conducted to evaluate the effects of SOFA injection
variation with test 3 serving as a mid-point verification that represents normal plant
operation.. Tests 2A, 2B and 2C were conducted to evaluate the effects of burner tilt and
load at port 3e2 for gas composition. Other ports were used for gas temperature, particle
size, and gas velocity. Test 2 was an abbreviated test where probes remained at a single
port during the entire test time. The test data were gathered at five different boiler levels
and nine-6 inch ports distributed about the furnace as noted in Figure 1. Half of the data
was gathered in the near-field, the other half above the fire-ball, near the nose, and into the
entrance of the convective pass. The raw data have been compiled and reported in a
single report without analysis (NYSEG 1995) and in three theses with analysis
(Groberg,T., 1996, Groberg, C., 1996 and Brooks, B., 1997.)



Table 2. Milliken Test Parameters

Test 1 2A 2B 2C 3 4 5

Gross Load (MWe) [ 156 132 155 158 157 156 157

Net Load (MWe) | 147 123 145 148 147 146 146
Coal Feed (t/hr) | 55.3 46.1 54.8 54.8 55.6 533 54.7
Excess Air (%)|. 3.9 39 4.0 4.1 3.9 3.9 3.7

Tilt (degrees) -5 -5 -5 +5 -5 -5 -5
SOFA (% open) 40 40 40 40 40 0 100
Coal Type B C C C A A A
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Prediction Schedule and Conditions

Comparisons of the measurements to computerized predictions have been
accomplished for 12 different cases as noted in Table 3. An additional nine 3-D code
computations were completed as a part of this effort toward producing this set of twelve
acceptable solutions. These comparisons have identified areas where improvements are
required in the computational grid input conditions, physical constants in the various

submodels, and grid resolution.

Table 3. Simulations on PCGC-3 to Predict the Milliken Furnace Properties

Case Grid | Milliken | Devolatilization | Minimum | Enthalpy Mass
number | Size | Test No. | activation energy | residual balance (%) | balance
constants achieved (%)

1 192K 3 Ubhayakar 1976 35 -5.0 0.01
2 192K 4 Ubhayakar 44 -5.9 -0.20
3 192K 4 1.2*Ubhayakar 3.8 -8.0 -0.16
4 337K 3 Ubhayakar 4.3 -7.2 -0.79
5 337K 4 Ubhayakar 4.6 -5.0 -0.19
6 337K 4 1.2*Ubhayakar 4.1 -5.2 -0.24
7 192K 3 1.2*Ubhayakar 4.1 -6.2 -0.05
8 192K 5 1.2*Ubhayakar 39 4.5 -0.03
9 65K 3 Ubhayakar 3.7 -11 -0.27
10 337K 5 1.2*Ubhayakar 34 -33 -0.01
12 337K 3 1.2*Ubhayakar 3.2 -2.7 -0.02
13 192K 5 Ubhayakar 4.5 -6.1 -0.03




All cases had a constant wall temperature boundary condition of 1160 F (900 K).
Since the exact wall temperature was not known, this was used as an estimate; however,
the bulk of the predicted temperatures agreed well with the measured values as can be
seen from the data reported in the Appendix.

The convergence criteria for the twelve cases as noted in Table 3 are a) the
maximum of the minimized residual values, b) acceptable enthalpy balance, and c)
acceptable mass balance. In all 12 cases, the computations were allowed to continue until
the convergence criteria bounds were met and the average of the iteration variation
changed very little as noted in Figure 2. Time is noted in the upper right corner as a bench
mark to aid the operator in tracking the convergence progress. In Figure 2, the case noted
1s not yet converged as the convergence bounds on the mass and enthalpy error had not
yet been met, though the maximum residual and the wall radiation and convection seem to
be changing very little. In some cases, convergence for the 65,000 node cases could be
accomplished within a week. For the 337,000 node cases, over a month of computer time
was typically consumed for each separate case. Convergence of a modeled computer case
requires practical experience and often involves stopping a case to change a parameter, or
reset a parameter once variation of other parameters have settled down, etc.

The finite nature of a numerical solution can be expressed with grid size. For
example, a laboratory-scale experiment using a 20,000 node grid can be used to model a 50
cubic foot region with a very fine grid, with grid independence achieved. In this Milliken
modeling effort, a 337,000 node grid was the largest practical grid size used to model a
126,000 cubic foot region and full grid independence was not necessarily always achieved.
Compared to the physical burner geometry, the numerical grid pattern models noted in
Figure 3 are crude and while the mass flows, velocity directions and areas were reliably
modeled, the velocity magnitude and location were less precisely modeled due to lack of
exact burner dimensions and correlative damper settings. This lack of precision tends to
make near-field validation comparisons less precise as will be noted later.

The point-for-point comparisons between measurement and prediction, along
with selected averages by boiler elevation are contained in some 700 graphs in the noted
theses (Groberg,T., 1996, Groberg, C., 1996 and Brooks, B., 1997) as well as in this
NYSEG comparison report. The detailed results of the 12 predictive cases are stored in
the ACERC CCL computers and if printed out would exceed 20,000 pages of data. The
Appendixes of this report contain a nearly complete set of comparison figures that are
summarized in the following discussion.

Comparisons between Measurements and Predictions

In the overall Milliken study, there were two major objectives. First, the data
were to be obtained and their accuracy assured (see Groberg, T., 1996). Secondly, these
data were to be compared with model predictions from the PCGC-3 model (Groberg, C.,
1996,and Brooks, 1997). A comparison of predictions with measured values on a point-
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for-point basis as well as at probe traverse level averages and furnace level averages, yield
substantial insight into the PCGC-3 computer code modeling capability for a medium-
scale, corner-fired coal furnace. Examples of point-for-point and averaged data are shown
in Figures 4 and 5. What follows is a summary of some of the conclusions that can be
drawn along with illustrations used to support these conclusions. All of the comparisons
are contained in the Appendixes and are segregated by mode of comparison.

Figure 4 illustrates the point-for-point comparison between measured data and
model predictions for three different grid sizes at level five in the far-field where the better
comparisons typically resulted. The example shown is for Test 3 (normal plant
operation). In three of the six graphs (temperature., NO,, and CO), the 337K grid
comparison is best. In the other three (O,, SO,, CO,) the 192K grid comparison is the
best. In general, the 337K predictions are better than the 192K predictions, both of
which are usually better than the 65K predictions (See Appendix A).

An overall comparison can be shown where each port profile is averaged by port
and plotted vs. the axis of the botler. This type of comparison is depicted in Figure 5.
Here again, the 337K grid prediction data best fits the measured data (though not
perfectly). In order to bring quantification to this comparison process, Figure 6 has been
constructed. In Figure 6, the % difference between point-for-point measurements and
predictions is noted for each grid size. Figure 5 compares port profile averages, whereas
Figure 6 shows the average of the point-for-point differences and is therefore a more
stringent validation condition than is Figure 5 besause the profile shape is a factor.
Comparisons of the type in Figure 6 are particularly valuable as they provide a means to
quantify changes in boundary conditions and/or submodel improvements as the computer
cases are exercised and converged.

Figure 6 shows three significant items. First, it is notable that the 337K grid 1s
generally the best. Second, the comparison improves as the flow proceeds toward the top
of the furnace. Moving from the near-field to the far-field generally improves the quality
of the predictions. This is partially explained by the crude nature of even the large 337K
grid in geometrically modeling the input configuration of the bumner as noted in Figure 3.
Thirdly, the CO difference comparison in Figure 6 shows very large numbers. Initially
this would appear to be poor comparison, but Figure 5 provides the explanation. Where
the large differences occur, the measured values are close to zero, resulting in an
exaggerated % difference with the near-zero division. This is further complicated by the
extremely large gradients in the CO field, changing by a factor of four orders of magnitude
with one floor level (see Figure 10). This substantial gradient strains the ability of the CO
measuring instruments, where two separate electro-chemical cells had to be used, one for a
range from 0-2000 ppm and another for range from 2000 ppm to 100,000 ppm. Thus, in
order to avoid misunderstanding, the numerical scale on all CO difference figures has been
removed. The Figures thus show relative differences only.

Another factor that contributes to these near-field comparison interpretations is
noted in Figures 7 and 8. In Figure 7, the comparison is made between the measured and
predicted turbulence intensities, which tends to drive the mixing processes in the burner

11
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region. In most cases, the predicted turbulence intensities (derived from the k value in the
turbulence k-g€ model) are larger than the measured values by as much as 1.8 times. Thus,
the fluid mechanics of the near-field are not exactly simulated. This is further illustrated
in Figure 8 where the predicted O, flame contours from the close-coupled over-fire air
inlet (CCOFA) are viewed from above at level 2. The measured O, data (Figure 9)
suggests an unbounded O, burner jet whereas the predictions show a displaced and
meandering O, jet, indicating a strong fireball vortex with some interference from the
opposite corner O, jet (see also Figure 8). This kind of analysis lends insight as the
modeler evaluates how to achieve the best geometric burner models to simulate new or
different furnace configurations.

Ignition Point Effects (Test 3)

Another factor that influences the near-field fluid mechanics is the ignition point
of the coal-air stream. This is varied by adjusting the devolatilization rate constants and
is illustrated in Figure 10. (Adjusting the devolatilization rate constants is not unrealistic
as the orngnal constants were derived from single particle drop-tube furnace data
(Ubhayakar 1976) whereas an industrial burner is more nearly imitated by particle cloud
data and seems better simulated with the revised constants.) These devolitilization rate
constants are referred to herein as “old” (original) and “new” (revised) values.

Figure 10 is also a comparison of the original vs. revised devolatilization rate
constants averaged over the port traverse for data from test 4. In general, the revised
devolatilization rate constants seem to fit the measurements best, though the change in
devolatilization rate constants is not seen as the major overall effect, having the strongest
influence in the near-field.

NO, and Carbon Burnout Effects (Tests 3,4, & 5)

Two of the measurements that are particularly important to an electric utility are
NOy and carbon-burn-out. Table 4 has been constructed to evaluate the No, .

Table 4. Comparisons of Measured (tests 3,4,5)and Predicted (cases 3, 4, 6, 7, 8,
10) for Outlet O, and NO, Concentrations with Overfire Air Variation

Case Measured | Predicted | O, Measured | Predicted | NO, SOFA
0; (%) 0, (%) Diff. | NOx NOx Diff. | NO, Test
(%) (ppm) (ppm) (%) condition
337K
4 3.8 5.0 32 220 203 7 3, Base
6 4.6 4.4 4 250 367 47 4, High
10 34 5.8 41 170 127 25 5, Low
192K
7 3.8 4.0 32 220 880 280 3, Base
3 4.4 3.8 36 250 444 78 4, High
8 34 3.0 12 170 216 27 5, Low
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In Table 4, the effect of separate over-fire air on NO, and O, has been constructed from
predicted and measured probe traverse averages and vertical exit plane averages. The
comparisons show that the 337K grid data are better than the 192K grid data and that the
trends are predicted and the absolute numerical values are typically within an error band
of 30% for the measured data.

A similar result is illustrated in Figure 11 for burnout and carbon-in-ash, where
level 4 has both predicted and measured data. Figure 11b is plotted as ‘“carbon-in-ash”
which is used by plant testers vs. “carbon burn-out”. While both quantities relate to the
same measurement, it is clear that the carbon-in-ash is the more sensitive method of
illustrating the carbon burnout data and gives a distinguishable difference in parameter
effects on carbon burnout. Agreement is quite good though the computerized sub-model
used for carbon burnout can be refined by more advanced sub-models. As such, future
improvement is expected in the carbon burnout comparisons.

Near-field Comparisons (Test 4)

Figure 12 shows predicted O, contours in the near-field for test 4. Near-field
comparisons are shown with Figure 13 where prediction/measurement comparisons are
made for test 4 adjusted to match the measured and predicted locations of the high
gradients that exist in the near-field (i.e., traverse of port 2e3 (case #6) vs. traverse path
6a (case #6a) in Figures 12 and 13, corresponding to about a 5 foot location adjustment).
The new location (case #6a) fits the measured data better than the case #6 prediction at
the physical port location as noted in Figure 13. This illustrates the near-field problem
where point-for-point numerical comparisons, while not exact, do have similar gradients
and appropriate bounds when adjusted for gradients being shifted due to burner input
modeling and alignment inaccuracies. This further illustrates the need for better
geometrical modeling of the bumer where the models used are crude due to the course grid
and withholding of proprietary information. Also, using the inlet areas taken from the
construction drawings yields too high near-field velocities. Figure 14 illustrates that,
while burner areas and mass flows have been used to model the burner input data, some of
the predicted velocities (case 12) in the near-field are too high compared to the measured
data (test 3). Improved geometric modeling of the bumners with finer grids and more
accurate burner dimensions may improve near-field prediction differences with measured
values.  Reducing the inlet velocities will tend to decrease the predicted relative
turbulence intensities thus improving the comparison. This geometrical input problem
arose when ABB/CE indicated they could not supply exact burner geometrical data for
proprietary reasons. Also, the non-linear correspondence between the damper settings
and the mass flow rates were not made available.
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Far-field Comparisons (Test 5)

In Figure 15, the far-field effects are shown for test 5, along with the effects of
grid size. The larger gnd number gives the better results and predicted NO, values
straddle the measured values and trends are correctly predicted. It should be noted that in
the far-field (Figure 15), the differences between measured and predicted values are
smaller than in the near-field (compare Figure 5 and Figure 6).

Conclusions
L. Full-scale furnace testing with sensitive laboratory instruments can

provide useful data and internal evaluation of such data gives assurance as to
the data’s accuracy.

2. A larger number of grid nodes is required for 3-D combustion model
solutions to yield adequate predictions for a boiler as large as Milliken
Station.

3. The coal devolatilization rate constants (which affect the point of gaseous

ignition) have a significant influence on the predicted results, especially in
the near-field.

4. Far-field comparisons between measured and predicted data are better than
near-field comparisons. Analysis suggests that near-field comparisions can
be improved with larger numbers of grid nodes and improved code
submodels.

5. Trends for important variables like NO, and carbon-in-ash are correctly
represented, but quantitative comparisons can be improved, especially
in the near-field.

6. Continued efforts in evaluation of computerized computational methods
should yield improved comparison results. Emphasis will need to be
placed on improved near-field burner geometric models, turbulence
intensity models, grid size effects, and more precise wall heat flux
predictions.
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APPENDIXES

Appendix A This appendix compares the effect of grid size.

Appendix B This appendix compares the effect of separate over-fire air (SOFA)
injection point and amount.

Appendix C This appendix compares the effect of changing the devolitilization constants
(simulating ignition point variation).

Appendix D-1 This appendix compares the effect of grid size and devolitilization rate
constants combined.

Appendix D-2 This appendix presents each of the twelve prediction cases separatly
along with comparitive measured data for gas and particle velocities.
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Appendix A

Compares the effect of numerical grid size

Appendix A illustrates the effect of grid size (65K, 192K, 337K) on the PCGC-3
predictions for the Milliken Station and compares the results with the measured data for
test #3 using the “old” devolatilization constants

Test #3 is the “base case” for the test series having the CCOFA ducts fully open
and the SOFA ducts open ~40%. The nominal NO, value measured at the stack by the
Westinghouse Distributed Processing Family (WDPF) system was 386 #/MBTU. The
plant operation was at full load (158 Mw, gross) and the tilts were at -5 degrees from
horizontal and fired Blacksville coal at 4% excess O, in the exhaust gases.

The general conclusions drawn from these comparisons are that the 65K data has
the poorest comparison and that the 337K data has the best, but not perfect comparison.
There is no indication that the grid independence has consistently been reached but the
337K grid was the largest attempted and took over two months to converge to the
condition noted in Table 2.

These Appendix A figures are separated for ease of comparison as follows:

A.1 compare grid size effects using the 65K, 192K, and 337K grids for test 3

(40% SOFA).

A.1.1-6 - Point-for-point comparisons by port for the noted six variables
A.1.7 - Average of the point-for-point differences by port arranged in
ascending order up the furnace axis with levels 2 and 5 having two ports
each.

A.1.8 - Comparisons of the port traverse averages arranged in ascending
order up the furnace axis with levels 2 and 5 having two ports each.

A.2 compares the grid size effects of the 192K and 337K grids using the “new”

devolatilization constants for Test 5 (100% SOFA).



A.2.1-6 same as A.1.1-6
A.2.7 same as A.1.7
A.2.8 same as A.1.8
A.3 compares the grid size effects of the 192K and 337 grids using the “new”
devolatilization constants for test 4 (0% SOFA).
A.4.1 compares point-for-point data on the effect of grid size (65K, 192K,
and 337K) for measured gas velocities by port in ascending order up the
axis of the furnace with levels 2 and 5 having two ports each.
A.4.2 shows the effect of point-for-point average differences by port in
ascending order up the furnace axis. The sensitivity to grid size is
particularly noted in the lower furnace, where grid size modeling effects are

most evident.
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Figure A.1.3 Measured and predicted values for cases 1, 4, and 9 at port 2e4
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Figure A.1.4 Measured and predicted values for cases 1, 4, and 9 at port 3e2
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Figure A.1.5 Measured and predicted values for cases 1, 4, and 9 at port 4e4
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Figure A.1.6 Measured and predicted values for cases 1, 4, and 9 at level 5
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Figure A.1.7 Difference between predictions and measurements for cases 1, 4, and 9
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Figure A.1.8 Averaged measured and predicted values for cases 1,4, and 9
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Figure A.2.1 Measured and predicted value for cases 8 and 10 at port le3
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Figure A.2.2 Measured ans predicted values for cases 8 and 10 at port 2e3
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Figure A.2.3 Measured and predicted values for cases 8 and 10 at port 2e4
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Figure A.2.4 Measured and predicted values for cases 8 and 10 at port 3e2
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Figure A.2.5 Measured and predicted values for cases 8 and 10 at port 4e4
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Figure A.2.6 Measured and predicted values for cases 8 and 10 at level 5
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Figure A.2.7 Average difference between prediction and measurement for cases 8 and 10
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Figure A.2.8 Average predicted and measured values for cases 8 and 10
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Figure A.3.1 Measured and predicted values for cases 6 and 3 at port 1e3
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Figure A.3.2 Measured and predicted values for cases 6 and 3 at port 2e3
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Figure A.3.3 Measured and predicted values for cases 6 and 3 at port 2e4
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Figure A.3.4 Measured and predicted values for cases 6 and 3 at port 3e2
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Figure A.3.5 Measured and predicted values for cases 6 and 3 at port 4e4
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Figure A.3.6 Measured and predicted values for cases 6 and 3 at port 5nl
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Figure A.3.7 Difference between predictions and measurements for cases 6 and 3
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Figure A.3.8 Averaged measured and predicted values for cases 6 and 3
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Appendix B

Compares the effect of over-fire air (SOFA) injection point and
amount

Appendix B illustrates the effect of SOFA variation and compares the 337K
predictions with the “new” devolatilization constants with the comparable measurements
from Test 3 (B.1), test 4 (B.2), & test 5 (B.3). The better comparisons are in the upper
part of the furnace. It is believed that the near-burner region can be improved with better
burner flow modeling. This is most evident not only in the O, comparisons (Figures
B.1.1-8), but in the velocity comparisons (Figure B.4) where the difference between the
predicted and measured quantities is the largest in the near-burner region (see figures B.4.4
and B.4.5). This difficulty arose when ABB/CE indicated that the details of their burner
were proprietary along with damper correlation uncertainties. The first inputs for burner
velocity were estimated from the secondary air flow areas from the construction
drawings. Also, there is not a linear relationship between damper setting and air flow.
Thus, the best estimate for division of air flow in the burner region probably comes from
the measured dusty pitot tube values even when considering the problems associated with
pitot tube measurements in a high turbulence field.

The Appendix B figures are separated for ease of comparison as follows:

B.1 Comparisons for Test 3 (40% SOFA).

B.2 Comparisons for Test 4 (0% SOFA).

B.3 Comparisons for Test 5 (100% SOFA).

B.4.1-2 Comparisons for the 337K gnid.

B.4.3-4 Comparisons for point-for-point average differences for each test

and the noted predictions (It is significant to note that the near-field velocity
differences are larger for the test 3 and 5 models than for the test 4 model. This

illuminates the difficulty of modeling the SOFA flows in near-burner field.



B.4.5-7 Average percent difference between predicted and measured values

for tests 3, 4, and 5.
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Figure B.1.1 Measured and predicted values for case 12 at port 1e3
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Figure B.1.2 Measured and predicted values for case 12 at port 2e3
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Figure B.1.3 Measured and predicted values for case 12 at port 2e4
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Figure B.1.4 Measured and predicted values for case 12 at port 3e2
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Figure B.1.5 Measured and predicted values for case 12 at port 4e4
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Figure B.1.6 Measured and predicted values for case 12 at level 5
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Figure B.1.8 Averaged measured and predicted values for case 12.
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Figure B.2.1 Measured and predicted values for case 6 at port le3
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Figure B.2.2 Measured and predicted values for case 6 at port 2e3
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Figure B.2.3 Measured and predicted values for case 6 at port 2e4
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Figure B.2.4 Measured and predicted values for case 6 at port 3e2
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Figure B.2.5 Measured and predicted values for case 6 at port 4e4
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Figure B.2.6 Measured and predicted values for case 6 at level 5
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Figure B.2.7 Difference between predictions and measurements for case 6
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Figure B.3.1 Measured and predicted values for case 10 at port 13
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Figure B.3.4 Measured and predicted values for case 10 at port 3e2
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Figure B.3.6 Measured and predicted values for case 10 at port 5nl
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Figure B.3.7 Average Difference between Prediction and Measurement by Port
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Figure B.3.8 Average measured and predicted values for case 10
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Figure B.4.1 Effect of SOFA on gas velocity predictions (337K grid).
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Figure B.4.3 Effect of SOFA on gas velocity predictions (192K grid).
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Appendix C

Compares the effect of changing the devolatilization rate constants

Appendix C shows the effect of varying the devolatilization constants (as noted in
Table 2) for the 337K grid (C.1) and the 192K grid (C.2) and the velocity measurements
(C.3). Itis clear that the change in devolatilization constants makes a difference, albeit
not as much perhaps as the grid size or SOFA variation, but significant nevertheless,
especially in the near-bumner field. This would be expected as the devolatilization
constants impact where ignition occurs in the prediction program. The “old”
devolatilization constants are derived from single particle drop-tube furnace data and are a
good beginning point for setting the fundamental constants used in PCGC-3. However,
the actual circumstance is not that of a single particle, but that of a cloud, which is
significantly different and justifies the use of an alternate constants identified as the “new
devolatilization” constants.

While not a clear case, the “new” constants appear to be slightly better than the

“old”.
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Figure C.1.1 Measured and predicted values for cases 4 and 12 at port 1e3
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Figure C.1.2 Measured and predicted values for cases 2 and 3 at port 2e3
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Figure C.1.3 Measured and predicted values for cases 4 and 12 at port 2e4
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3500 5000
3250
& 1000 - 4000 -
2 0
3 2750 2. 3000 -
= =
22500 ;
£ 2250 4 . o 3 O 2000 4
- | cr’__0’,4,__-—<>—g—o——<>-—o—--<
g 20009 e ° 1000 .
1750 4
1500 : ; ——t 0 —a—a——¢ —o———o—o0—9
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

Distance from wall at port 4e4 (ft)

Distance from wall at port 4e4 (ft)

Loo-#4(337.0ld) -0~-#12(337.pew) o fest3 |

02 (%)
o

1 2 3 4 5 6 7 8 9
Distance from wall at port 4e4 (ft)

[ —o—#4(337.0l) -0 #12(337.new) o tfest3 |

¢ 1 2 3 4 5 6 7 8 9
Distance from wall at port 4e4 (ft)
o #4 (337 _old) - #12 (337, new) s gfestd |

700 16
600 -
14
__ 500 1
£ 3 17
£ 400 S 12
= 300 )
e 1 10
S o
2000 TN —w—e—t
8.
100 1
0 : - - - : - ; 6 : - 1 : ‘ ‘ :
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Distance from wall at port 4e4 (ft)

L—o-#4 (37 old)  —-#12(337.new) o fost3 |

Distance from wall at port 4de4 (ft)
L—o—#4(337.0ld) --O-#12(337.new) o lestd @

Figure C.1.5 Measured and predicted values for cases 4 and 12 at port 4e4
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Figure C.1.6 Measured and predicted values for cases 4 and 12 at level 5
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Figure C.1.7 Difference between predictions and measurements for cases 4 and 12
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Figure C.2.2 Measured and predicted values for cases 2 and 3 at port 2e3
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Figure C.2.3 Measured and predicted values for cases 2 and 3 at port 2e4
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Figure C.2.6 Measured and predicted values for cases 2 and 3 at port 5nl
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Figure C.2.7 Difference between predictions and measurements for cases 2 and 3
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Figure C.2.8 Averaged measured and predicted values for cases 2 and 3
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Figure C.3.1 Effect of devolatilization on gas velocity predictions (test 3).
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Figure C.3.3 Effect of devolatilization on gas velocity predictions (test 4).



~=- Old 337K (case 5) -e- New 337K (case 6)
-o— Old 192K (case 2) —= New 192K (case 3)

g

160 +

120 +

00
(=]
+

Difference in velocity (%)
F.y
(=]

le3 2e2 2e3 2e4 4ded 4n2 Sl Se2
Port

Figure C.3.4 Average velocity difference for test 4 by port






Appendix D

Compares the combined effects of numerical grid size and
devolatilization rate constants, plus compares the particle and gas
velocities for each of the 12 cases converged

Appendix D.1 shows the combined effects of grid size adjustment and
devolatilization constants at the same time .

Section D.2 is a comparison between all twelve cases run on PCGC-3 along with
appropriate test data from tests 3, 4, and 5 for velocity. The velocity measurements used
are those for the combustion gases using the dusty pitot tube along with the Insitec laser
based instrument using the PCSV system (Particle Concentration, Size and Velocity) data
reduction. The PCSV unit measures both the large and small particle velocities separately
with the large particle data considered to be most accurate. The small particles which
would tend to follow the gas velocity give the better comparisons, but not always (see
figure D.2.13). Brooks (1997) concluded that the most correct value for the measured
velocity was therefore in between the gas measurements and large particle velocity
measured values. In any event, the redundant measurements are supportive of each other,
suggesting that the near-burner dusty pitot tube measurements (the only ones in that
harsh near-field environment) are acceptable even though the PCSV unit could not operate

in the near burner-region due to high heat flux and too high a particle flux rate.
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Figure D.1.1 Measured and predicted values for cases 1, 4, and 7 at port 1e3



3500
3250 4
£ 3000 -
2
22750 ¢ - -
(-]
£ 2500
j =%
£ 2250 -
é 2000 A
1750 -
1500 : ‘ ‘ : ‘ : ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Distance from wall at port 2e3 (ft) Distance from wall at port 2e3 (ft)
[=—#109) —0-#4(37) —A-#7(192) e test3]
12 2000
S
o
=]
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 S5 6 7 8 9
Distance from wall at port 2e3 (ft) Distance from wall at port 2e3 (ft)
2 T TiTF ] ‘ 5 T TS y
700
600 §-------- -t
. 500 1
g_- 400 g
% 300 S
& .
> &)
200 1
100
0 A & - - - - - : ] 6 - ‘ - ‘ - -
0o 1 2 3 4 5 6 7 8 9 ¢ 1 2 3 4 5 6 7 8 9
Distance from wall at port 2e3 (ft) Distance from wall at port 2e3 (ft)
== #1(192) #4337 ——#7(192) e test3] [o—#10(192) ~0-#4(337) —A—#70192) e testl

Figure D.1.2 Measured and predicted values for cases 1, 4, and 7 at port 2e3
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Figure D.1.3 Measured and predicted values for cases 1, 4, and 7 at port 2e4
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Figure D.1.4 Measured and predicted values for cases 1, 4, and 7 at port 3e2
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Figure D.1.5 Measured and predicted values for cases 1, 4, and 7 at port 4e4
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Figure D.1.6 Measured and predicted values for cases 1, 4, and 7 at level 5
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Figure D.1.7 Difference between predictions and measurements for cases 1, 4, and 7.
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Figure D.1.8 Averaged measured and predicted values for cases 1, 4, and 7.
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Figure D.2.1. Predicted and measured in-plane velocities for case 1.
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Figure D.2.2. Predicted and measured in-plane velocities for case 2.
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Figure D.2.3. Predicted and measured in-plane velocities for case 3.
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Figure D.2.4. Predicted and measured in-plane velocities for case 4.
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Figure D.2.5. Predicted and measured in-plane velocities for case 5.



-— predicted + measured gas

100
> 80+
2
2 601 .
.5 a 4 Y -
S
S 401 \/\
> -
2 N
S 2%, .. .
0
0 2 4 6 8 10
Distance from wall at port 1e3 (ft)
— predicted « measured gas
200
“ 160 4
&
et
2120 ¢
'S
S
T>) 80 ¢+
8 . PO NP NP
S 404
0
0 2 4 6 8 10
Distance from wall at port 2e3 (ft)
— predicted » measured gas = large particle
100
> g0l
S
e’
2 60 ¢
i)
&
© 40+t
>
]
S 204
0
0 2 4 6 8 10
Distance from wall at port 4e4 (ft)
— predicted ~ measured gas * large particle
100
= 801
2
2 60 ¢
2
L 40 1 = = =
5 . P . LR
o} 204 " ., N
0 = .
0 2 4 6 8 10

Distance from wall at port 5n1 (ft)

— predicted * measured gas
200
? 160 T a
2 .
2120
K3}
=}
© 807t
>
8
B 40t
0 -
0 2 4 6 8 10
Distance from wall at port 2e2 (ft)
— predicted + measured gas
200

2

Gas velocity (ft/s)
g B

40 4 * . -
0
] 2 4 6 8 10
Distance from wall at port 2e4 (ft)
— predicted + measured gas = large particle
100
’:? 80 b
&
N’
.‘->'-;‘ 60 1 ® = =
2 a
© 407
>
é 20 ¢
[
0 2 4 6 8 10
Distance from wall at port 4n2 (ft)
— predicted + measured gas * large particle
100
) 80 1
2
2 60
=y z
2 * s -
(5 40 a & & a & = L a & 5 4
> -
3
o 207t
0
0 2 4 6 8 10

Distance from wall at port 5s2 (ft)

Figure D.2.6. Predicted and measured in-plane velocities for case 6.
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Figure D.2.7. Predicted and measured in-plane velocities for case 7.
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Figure D.2.8. Predicted and measured in-plane velocities for case 8.
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Figure D.2.9. Predicted and measured in-plane velocities for case 9.
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Figure D.2.10. Predicted and measured in-plane velocities for case 10.
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Figure D.2.11. Predicted and measured in-plane velocities for case 12.
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Figure D.2.12. Predicted and measured in-plane velocities for case 13.
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Figure D.2.13. Measured gas and particle velocities taken in the Milliken boiler.
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Table 2.

Milliken Test Parameters.

Test 1 2A 2B 2C 3 4 5
Gross Load (MWe) | 156 132 155 158 157 156 157
Net Load (MWe) | 147 123 145 148 147 146 146
Coal Feed (thr) [ 55.3 46.1 54.8 54.8 55.6 533 54.7
Excess Air (%) | 3.9 3.9 4.0 4.1 3.9 3.9 3.7
Tilt (degrees) -5 -5 -5 +5 -5 -5 -5
SOFA (% open)| 40 40 40 40 40 0 100
Coal Type B C C C A A A
Table - Case comparisons for the PCGC-3 Milliken boiler simluations.

Grid size cases (test 3, old devol.)

grid

65K

SOFA cases (new devol. except case 4)

SOFA — | 0% open 40% open | 100% open
grid | (test 4) (test 3) (test 5)
192K grid “cased | case? | eases
337K grid ccase6 7| cased
Devolatilization cases
0 0
sopa +| W | o
grid L devol. — old new old new
192K grid case2 | case3 || case 1| case 7"
| 337K grid “éase5 | case6 | cased




